- bijektiv
- eine Funktion ist bijektiv, wenn sie injektiv und surjektiv ist
Acronyms. 2013.
Acronyms. 2013.
Bijektiv — Eine bijektive Funktion. Bijektivität (bijektiv oder umkehrbar eindeutig auf oder eineindeutig auf) ist eine Eigenschaft einer mathematischen Funktion. Eine Funktion ist bijektiv, wenn sie verschiedene Elemente ihres Definitionsbereichs auf… … Deutsch Wikipedia
bijektiv — eine Funktion ist bijektiv, wenn sie injektiv und surjektiv ist … Acronyms von A bis Z
bijektiv — bi|jek|tiv [auch: ... ti:f] <Adj.>: [zu lat. bi = zwei u. iactare = werfen] (Math.): bei der Abbildung einer mathematischen ↑Menge (2) jedem abzubildenden Element nur ein abbildendes Element u. umgekehrt zuordnend … Universal-Lexikon
bijektiv — bi|jek|tiv [auch ... ti:f] <zu ↑bi..., lat. iacere »werfen« u. ↑...iv> bei der Abbildung einer math. Menge jedem Urbild nur einen Bildpunkt u. umgekehrt zuordnend (Math.) … Das große Fremdwörterbuch
Bijektive Funktion — Eine bijektive Funktion. Bijektivität (bijektiv oder umkehrbar eindeutig auf oder eineindeutig auf) ist eine Eigenschaft einer mathematischen Funktion; eine bijektive Funktion nennt man auch Bijektion. Eine Funktion ist bijektiv, wenn sie sowohl… … Deutsch Wikipedia
Bijektion — Eine bijektive Funktion. Bijektivität (bijektiv oder umkehrbar eindeutig auf oder eineindeutig auf) ist eine Eigenschaft einer mathematischen Funktion. Eine Funktion ist bijektiv, wenn sie verschiedene Elemente ihres Definitionsbereichs auf… … Deutsch Wikipedia
Bijektive Abbildung — Eine bijektive Funktion. Bijektivität (bijektiv oder umkehrbar eindeutig auf oder eineindeutig auf) ist eine Eigenschaft einer mathematischen Funktion. Eine Funktion ist bijektiv, wenn sie verschiedene Elemente ihres Definitionsbereichs auf… … Deutsch Wikipedia
Bijektivität — Eine bijektive Funktion. Bijektivität (bijektiv oder umkehrbar eindeutig auf oder eineindeutig auf) ist eine Eigenschaft einer mathematischen Funktion. Eine Funktion ist bijektiv, wenn sie verschiedene Elemente ihres Definitionsbereichs auf… … Deutsch Wikipedia
Eineindeutige Zuordnung — Eine bijektive Funktion. Bijektivität (bijektiv oder umkehrbar eindeutig auf oder eineindeutig auf) ist eine Eigenschaft einer mathematischen Funktion. Eine Funktion ist bijektiv, wenn sie verschiedene Elemente ihres Definitionsbereichs auf… … Deutsch Wikipedia
Umkehrbar eindeutig — Eine bijektive Funktion. Bijektivität (bijektiv oder umkehrbar eindeutig auf oder eineindeutig auf) ist eine Eigenschaft einer mathematischen Funktion. Eine Funktion ist bijektiv, wenn sie verschiedene Elemente ihres Definitionsbereichs auf… … Deutsch Wikipedia